Orthogonal Pfister Involutions in Characteristic Two
نویسنده
چکیده
We show that over a field of characteristic 2 a central simple algebra with orthogonal involution that decomposes into a product of quaternion algebras with involution is either anisotropic or metabolic. We use this to define an invariant of such orthogonal involutions in characteristic 2 that completely determines the isotropy behaviour of the involution. We also give an example of a non-totally decomposable algebra with orthogonal involution that becomes totally decomposable over every splitting field of the algebra.
منابع مشابه
Involutions of a Clifford algebra induced by involutions of orthogonal group in characteristic 2
Among the involutions of a Clifford algebra, those induced by the involutions of the orthogonal group are the most natural ones. In this work, several basic properties of these involutions, such as the relations between their invariants, their occurrences and their decompositions are investi-
متن کاملPfister ’ S Theorem for Involutions Of
We use the fact that a projective half-spin representation of Spin 12 has an open orbit to generalize Pfister's result on quadratic forms of dimension 12 in I 3 to orthogonal involutions. In his seminal paper [Pf], Pfister proved strong theorems describing quadratic forms of even dimension ≤ 12 that have trivial discriminant and Clifford invariant, i.e., that are in I 3. His results have been e...
متن کاملAsymptotics of the Number of Involutions in Finite Classical Groups
Answering a question of Geoff Robinson, we compute the large n limiting proportion of i(n, q)/qbn 2/2c, where i(n, q) denotes the number of involutions in GL(n, q). We give similar results for the finite unitary, symplectic, and orthogonal groups, in both odd and even characteristic. At the heart of this work are certain new “sum=product” identities. Our self-contained treatment of the enumerat...
متن کاملQuadratic Pairs in Characteristic 2 and the Witt Cancellation Theorem
We define the orthogonal sum of quadratic pairs and we show that there is no Witt cancellation theorem for this operation in characteristic 2. 1. Introduction. Quadratic pairs on central simple algebras were defined in [5]. They play the same role for quadratic forms as involutions for symmetric or skew-symmetric bilinear forms. In particular, they can be used to define twisted orthogonal group...
متن کاملOn Anisotropy of Orthogonal Involutions
We show that an orthogonal involution of a central division algebra D (over a field of characteristic not 2) remains anisotropic over the generic splitting field of D. We also give a couple of other applications of the same technique.
متن کامل